K-Monotonicity is Not Testable on the Hypercube
نویسندگان
چکیده
We continue the study of k-monotone Boolean functions in the property testing model, initiated by Canonne et al. (ITCS 2017). A function f : {0, 1} → {0, 1} is said to be kmonotone if it alternates between 0 and 1 at most k times on every ascending chain. Such functions represent a natural generalization of (1-)monotone functions, and have been recently studied in circuit complexity, PAC learning, and cryptography. In property testing, the fact that 1-monotonicity can be locally tested with polyn queries led to a previous conjecture that k-monotonicity can be tested with poly(n) queries. In this work we disprove the conjecture, and show that even 2-monotonicity requires an exponential in √ n number of queries. Furthermore, even the apparently easier task of distinguishing 2-monotone functions from functions that are far from being n.01-monotone also requires an exponential number of queries. Our results follow from constructions of families that are hard for a canonical tester that picks a random chain and queries all points on it. Our techniques rely on a simple property of the violation graph and on probabilistic arguments necessary to understand chain tests. ∗Purdue University. Email: [email protected]. Research supported in part by NSF CCF-1649515. †Purdue University. Email: [email protected]. Research supported in part by NSF CCF-1649515 and NSF CCF-1618918. ‡Duquesne University. Email: [email protected].
منابع مشابه
Monotonicity Testing and Shortest-Path Routing on the Cube
We study the problem of monotonicity testing over the hypercube. As previously observed in several works, a positive answer to a natural question about routing properties of the hypercube network would imply the existence of efficient monotonicity testers. In particular, if any ` disjoint source-sink pairs on the directed hypercube can be connected with edge-disjoint paths, then monotonicity of...
متن کاملA New Parallel Matrix Multiplication Method Adapted on Fibonacci Hypercube Structure
The objective of this study was to develop a new optimal parallel algorithm for matrix multiplication which could run on a Fibonacci Hypercube structure. Most of the popular algorithms for parallel matrix multiplication can not run on Fibonacci Hypercube structure, therefore giving a method that can be run on all structures especially Fibonacci Hypercube structure is necessary for parallel matr...
متن کاملLower Bounds for Local Monotonicity Reconstruction from Transitive-Closure Spanners
Given a directed graph G = (V,E) and an integer k ≥ 1, a ktransitive-closure-spanner (k-TC-spanner) of G is a directed graph H = (V,EH) that has (1) the same transitive-closure as G and (2) diameter at most k. Transitive-closure spanners are a common abstraction for applications in access control, property testing and data structures. We show a connection between 2-TC-spanners and local monoton...
متن کاملOptimal bounds for monotonicity and Lipschitz testing over the hypercube
The problem of monotonicity testing of the boolean hypercube is a classic well-studied, yet unsolved question in property testing. We are given query access to f : {0, 1} 7→ R (for some ordered range R). The boolean hypercube B has a natural partial order, denoted by ≺ (defined by the product of coordinate-wise ordering). A function is monotone if all pairs x ≺ y in B, f(x) ≤ f(y). The distance...
متن کاملFlipping out with many flips: hardness of testing k-monotonicity
A function f : {0, 1} → {0, 1} is said to be k-monotone if it flips between 0 and 1 at most k times on every ascending chain. Such functions represent a natural generalization of (1-)monotone functions, and have been recently studied in circuit complexity, PAC learning, and cryptography. Our work is part of a renewed focus in understanding testability of properties characterized by freeness of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 24 شماره
صفحات -
تاریخ انتشار 2017